ISS-Rome Workshop

Migrant screening for tuberculosis

Dr. Manish Pareek NIHR Academic Clinical Lecturer University of Leicester, UK mp426@le.ac.uk

Conflict of interest statement

• I have no financial conflicts of interest

Areas to cover today...

Screening for active TB

Screening for latent TB

Health Research

Epidemiology

22 high burden countries account for over 80% of cases

Source: WHO 2013

TB remains a problem in high-income countries

NHS

National Institute for

Health Research

Source: ECDC 2012, CDC 2011

TB in high-income countries: UK as an example

Source: HPA 2009

TB incidence in the UK is increasing...

NHS National Institute for Health Research

Source: PHE 2014

...but mainly in the foreign-born

Source: HPA 2012

TB mainly a disease of foreign-born in the UK

Source: PHE 2014

UK predicted to have more cases of TB than the US within the next two years

National Institute for Health Research

Foreign-born TB: a significant proportion of the TB burden in high-income countries

But why?

Reason: Synergistic impact of migration and reactivating latent tuberculosis infection

Evolving migration patterns during the 20th/21st century

Source: IOM 2005

Migration to the UK

NHS National Institute for Health Research

Source: ONS 2013

Migration to UK influenced by its past

Health Research

Migration alone not enough... Need to consider TB natural history

Reactivation of LTBI plays critical role

- Data suggests little active TB at time of migration
- High rates in initial years after migration (new-entrants)

Molecular studies: limited community transmission

Sources: HPA 2011, Ormerod 1998, Cohen 2001

To recap...

- TB cases in the foreign-born make up a significant proportion of TB burden
- Combined impact of migration and reactivation of pre-existing latent TB infection
- High rates within the first 5 years after entry

So how do high-income countries screen migrants?

Screening practices in high-income countries

Evaluation of Immigrant Tuberculosis Screening in Industrialized Countries

Manish Pareek, Iacopo Baussano, Ibrahim Abubakar, Christopher Dye, and Ajit Lalvani

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 18, No. 9, September 2012

- International survey of 31 OECD high-income countries
- Evaluated screening practices for active and latent TB
 - Where do they screen?
 - Which groups are screened?
 - How do they screen?

NHS

National Institute for

Health Research

• 29/31 countries responded

Source: Pareek M 2012

High-income countries prioritise screening for active TB rather than latent TB

Source: Pareek M 2012

High-income countries prioritise screening for active TB rather than latent TB

...But screening yields for active tuberculosis are highly variable

	field × 1000 (95% CI)	Per cent weign
Europe		
VAN DEN BRANDE et al. [19] (1997)	1.44 (0.54-3.83)	8.72
CALLISTER et al. [20] (2002)	1.84 (1.16-2.92)	9.25
JOHNSEN et al. [21] (2005)	2.48 (1.62-3.80)	9.13
Laifer et al. [26] (2004)	2.56 (1.28-5.12)	8.47
Rysstad and Gallefoss [28] (2003)	5.00 (1.88-13.24)	4.61
SMITH et al. [29] (2000)	12.70 (7.23-22.22)	3.34
Subtotal (I ² =51.5%, p=0.067)	2.36 (1.31-3.40)	43.51
Africa		
CALLISTER et al. [20] (2002)	4.39 (3.29-5.85)	9.00
JOHNSEN et al. [21] (2005)	8.08 (4.79-13.60)	5.80
Van den Brande et al. [19] (1997)	9.35 (5.44-16.04)	4.94
Subtotal (I ² =62.5%, p=0.069)	6.55 (3.19-9.90)	19.74
Asia		
Callister et al. [20] (2002)	2.70 (1.89-3.86)	9.20
Ormerod [36] (1998)	4.46 (2.40-8.27)	7.40
WILCKE et al. [27] (1998)	6.71 (3.90-11.53)	6.42
NOLAN and ELARTH [38] (1988)	8.36 (6.70-10.43)	8.52
JUDSON et al. [30] (1984)	19.50 (12.32-30.74)	2.51
KELLY et al. [31] (2002)	• 38.11 (30.31-47.82)	2.70
Subtotal (l ² =94.9%, p=0.000)	11.17 (6.25–16.08)	36.75
0.5 5 10	50	
Screening yield (×1000 screened	i)	
÷, (-	

Source: Arshad et al 2010

Vield v1000 (0E9/ CI). Decent weight

...But screening yields for active tuberculosis are highly variable

Screening yield (×1000 screened)	Y	ield 0.11%
0.5 5 10	50	
Subtotal (I ² =94.9%, p=0.000)	11.17 (6.25–16.08)	36.75
Keuv et al. [31] (2002)	38 11 (30 31-47 82)	2 70
Judson et al. [30] (1984)	19.50 (12.32-30.74)	2.51
NoLAN and ELARTH [38] (1988)	8.36 (6.70-10.43)	8.52
WLCKE et al. [27] (1998)	6.71 (3.90-11.53)	6.42
	2.70 (1.05-3.00) 4.46 (2.40-8.27)	7.40
Asia	2 70 /1 90-2 96	0.20
Subtotal (I<=62.5%, p=0.069)	6.55 (3.19-9.90)	19.74
Van den Brande <i>et al.</i> [19] (1997)	9.35 (5.44-16.04)	4.94
JOHNSEN et al. [21] (2005)	8.08 (4.79-13.60)	5.80
CALLISTER et al. [20] (2002)	4.39 (3.29-5.85)	9.00
Africa		
Subtotal (I2=51.5%, p=0.067)	2.36 (1.31-3.40)	43.51
SMITH et al. [29] (2000)	12.70 (7.23-22.22)	3.34
Rysstad and Gallefoss [28] (2003)	5.00 (1.88-13.24)	4.61
LAIFER et al. [26] (2004)	2.56 (1.28-5.12)	8.47
JOHNSEN et al. [21] (2005)	2.48 (1.62-3.80)	9.13
CALLISTER et al. [20] (2002)	1.84 (1.16-2.92)	9.25
VAN DEN BRANDE et al. [19] (1997) 🔹	1.44 (0.54-3.83)	8.72
Europe		
	11610 × 1000 (55 % CI) P	

Vield v1000 (0E9/ CI). Decent weight

Source: Arshad et al 2010

UK port of entry screening has a low yield and may not be cost-effective

Heathrow

- Total referrals 175,039
- Have X ray 71,000
- Abnormal 173
- TB diagnosed 92 (0.12%)

Source: HPA 2007

Pre-arrival screening yields for active tuberculosis may be higher

Variable	All Immigrants	Immigrants with Tuber	n Smear-Negative culosis	Immigrants with	Inactive Tuberculosis
	no. (%)	no. (%)	no./100,000 persons (95% CI)	no. (%)	no./100,000 persons (95% CI)
Total	2,714,223 (100.0)	26,075 (100.0)	961 (949-973)	22,716 (100.0)	837 (826-848)
Sex					
Male	1,203,271 (44.3)	13,175 (50.5)	1095 (1076-1114)	11,146 (49.1)	926 (909-943)
Female	1,510,952 (55.7)	12,900 (49.5)	854 (839-869)	11,570 (50.9)	766 (752-780)
Age					
0-14 yr	676,821 (24.9)	2,024 (7.8)	299 (286-312)	412 (1.8)	61 (55-67)
15-24 yr	535,218 (19.7)	1,077 (4.1)	201 (189-213)	1,183 (5.2)	221 (208-234)
25-44 yr	821,394 (30.3)	5,422 (20.8)	660 (642-678)	4,881 (21.5)	594 (577-611)
45-64 yr	500,072 (18.4)	10,643 (40.8)	2128 (2088-2168)	9,683 (42.6)	1936 (1898-1974
≥65 yr	180,718 (6.7)	6,909 (26.5)	3823 (3734-3912)	6,557 (28.9)	3628 (3542-3714
World Health Organization region of birth					
African	148,095 (5.5)	41 (0.2)	28 (19-37)	159 (0.7)	107 (90-124)
The Americas	1,029,503 (37.9)	1,491 (5.7)	145 (138-152)	3,249 (14.3)	316 (305-327)
Eastern Mediterranean	220,672 (8.1)	41 (0.2)	19 (13-25)	268 (1.2)	121 (106-136)
European	370,071 (13.6)	298 (1.1)	81 (72-90)	1,169 (5.1)	316 (298-334)
Southeast Asian	250,988 (9.2)	444 (1.7)	177 (160-194)	1,885 (8.3)	751 (717-785)
Western Pacific	694,894 (25.6)	23,760 (91.1)	3419 (3376-3462)	15,986 (70.4)	2300 (2265-2335
Country of birth*					
Philippines	216,508 (8.0)	15,106 (57.9)	6977 (6869-7085)	7,346 (32.3)	3393 (3317-3469
Vietnam	114,764 (4.2)	6,980 (26.8)	6082 (5943-6221)	1,721 (7.6)	1500 (1429-1571)
China†	202,395 (7.5)	1,383 (5.3)	683 (647-719)	3,600 (15.8)	1779 (1721-1837
Mexico	389,408 (14.3)	991 (3.8)	254 (238-270)	1,200 (5.3)	308 (290-326)
India	181,735 (6.7)	357 (1.4)	196 (175-217)	1,438 (6.3)	791 (750-832)
Other	1,609,413 (59.3)	1,258 (4.8)	78 (74-82)	7,411 (32.6)	460 (450-470)
Prevalence of tuberculosis in birth country:					
0-9 cases/100,000	170,727 (6.3)	17 (0.1)	10 (5-15)	97 (0.4)	57 (45-69)
10-19 cases/100,000	110,148 (4.1)	10 (<0.1)	9 (3-15)	148 (0.7)	134 (112-156)
20-49 cases/100,000	629,895 (23.2)	1,029 (3.9)	163 (153-173)	1,665 (7.3)	264 (251-277)
50-99 cases/100,000	229,260 (8.4)	103 (0.4)	45 (36-54)	1,843 (8.1)	804 (767-841)
100-149 cases/100,000	334,288 (12.3)	460 (1.8)	138 (125-151)	2,085 (9.2)	624 (597-651)
≥150 cases/100,000	1,207,380 (44.5)	24,385 (93.5)	2020 (1995-2045)	16,165 (71.2)	1339 (1318-1360
No estimate	32,525 (1.2)	71 (0.3)	218 (166-270)	713 (3.1)	2192 (2031-2353

Source: Liu et al 2009

Pre-arrival screening yields for active tuberculosis may be higher

Table 1. Prevalences of Smear-M	Negative and Inactive Tu	berculosis among U	SBound Immigrants,	1999-2005.		
Variable	All Immigrants	Immigrants wit Tube	h Smear-Negative rculosis	Immigrants with	Inactive Tuberculosis	
			no./100,000 persons		no./100,000 persons	
Total	2,714,223 (100.0)	26,075 (100.0)	961 (949-973)	22,716 (100.0)	837 (826-848)	
Sex						
Male	1,203,271 (44.3)	13,175 (50.5)	1095 (1076-1114)	11,146 (49.1)	926 (909-943)	
Female	1,510,952 (55.7)	12,900 (49.5)	854 (839-869)	11,570 (50.9)	766 (752-780)	•
Age						-
0–14 yr	676,821 (24.9)	2,024 (7.8)	299 (286-312)	412 (1.8)	61	/iald 0 96%
15–24 yr	535,218 (19.7)	1,077 (4.1)	201 (189-213)	1,183 (5.2)	223	11eiu 0.3070
25-44 yr	821,394 (30.3)	5,422 (20.8)	660 (642-678)	4,881 (21.5)	594	
45-64 yr	500,072 (18.4)	10,643 (40.8)	2128 (2088-2168)	9,683 (42.6)	1936 (1898-1974)	
≥65 yr	180,718 (6.7)	6,909 (26.5)	3823 (3734-3912)	6,557 (28.9)	3628 (3542-3714)	
World Health Organization region of birth						
African	148,095 (5.5)	41 (0.2)	28 (19-37)	159 (0.7)	107 (90-124)	
The Americas	1,029,503 (37.9)	1,491 (5.7)	145 (138-152)	3,249 (14.3)	316 (305-327)	
Eastern Mediterranean	220,672 (8.1)	41 (0.2)	19 (13-25)	268 (1.2)	121 (106-136)	
European	370,071 (13.6)	298 (1.1)	81 (72-90)	1,169 (5.1)	316 (298-334)	
Southeast Asian	250,988 (9.2)	444 (1.7)	177 (160-194)	1,885 (8.3)	751 (717-785)	
Western Pacific	694,894 (25.6)	23,760 (91.1)	3419 (3376-3462)	15,986 (70.4)	2300 (2265-2335)	
Country of birth*						
Philippines	216,508 (8.0)	15,106 (57.9)	6977 (6869-7085)	7,346 (32.3)	3393 (3317-3469)	
Vietnam	114,764 (4.2)	6,980 (26.8)	6082 (5943-6221)	1,721 (7.6)	1500 (1429-1571)	
China†	202,395 (7.5)	1,383 (5.3)	683 (647-719)	3,600 (15.8)	1779 (1721-1837)	
Mexico	389,408 (14.3)	991 (3.8)	254 (238-270)	1,200 (5.3)	308 (290-326)	
India	181,735 (6.7)	357 (1.4)	196 (175-217)	1,438 (6.3)	791 (750-832)	
Other	1,609,413 (59.3)	1,258 (4.8)	78 (74-82)	7,411 (32.6)	460 (450-470)	
Prevalence of tuberculosis in birth country:						
0-9 cases/100,000	170,727 (6.3)	17 (0.1)	10 (5-15)	97 (0.4)	57 (45-69)	
10-19 cases/100,000	110,148 (4.1)	10 (<0.1)	9 (3-15)	148 (0.7)	134 (112-156)	
20-49 cases/100,000	629,895 (23.2)	1,029 (3.9)	163 (153-173)	1,665 (7.3)	264 (251-277)	
50-99 cases/100,000	229,260 (8.4)	103 (0.4)	45 (36-54)	1,843 (8.1)	804 (767-841)	
100-149 cases/100,000	334,288 (12.3)	460 (1.8)	138 (125-151)	2,085 (9.2)	624 (597-651)	
≥150 cases/100,000	1,207,380 (44.5)	24,385 (93.5)	2020 (1995-2045)	16,165 (71.2)	1339 (1318-1360)	
No estimate	32,525 (1.2)	71 (0.3)	218 (166-270)	713 (3.1)	2192 (2031-2353)	Source: Liu et al 200

Pre-arrival screening yields for active tuberculosis may be higher

	Table 1. Prevalences of Smear-	Negative and Inactive Tu	berculosis among U	.SBound Immigrants,	1999-2005.		
	Variable	All Immigrants	Immigrants wit Tube	h Smear-Negative rculosis	Immigrants with	Inactive Tuberculosis	
				no./100,000 persons		no./100,000 persons	
	Total	2,714,223 (100.0)	26,075 (100.0)	961 (949-973)	22,716 (100.0)	837 (826-848)	
	Sex	1 000 000 000 000 00	10.175.050.51	1005 0005 1110			
	Female	1,203,271 (44.3)	13,175 (50.5)	1095 (1076-1114) 854 (839-869)	11,146 (49.1)	926 (909-943) 766 (752-780)	↓ ↓
	Age	risesisse (see.)	121200 (1212)	004 (000 000)	11,000 (00.0)		
	0-14 yr	676,821 (24.9)	2,024 (7.8)	299 (286-312)	412 (1.8)	61	7101d 0 96%
	15–24 yr	535,218 (19.7)	1,077 (4.1)	201 (189-213)	1,183 (5.2)	223	ieiu 0.3070
	25-44 yr	821,394 (30.3)	5,422 (20.8)	660 (642-678)	4,881 (21.5)	594	
	45-64 yr	500,072 (18.4)	10,643 (40.8)	2128 (2088-2168)	9,683 (42.6)	1936 (1898-1974)	
	World Health Organization region of birth		0.909 (20.5)	347513738-59171	0.557.776.90	30/0/2020/20/101	
	African	148,095 (5.5)	41 (0.2)	28 (19-37)	159 (0.7)	107 (90-124)	
	The Americas	1,029,503 (37.9)	1,491 (5.7)	145 (138-152)	3,249 (14.3)	316 (305-327)	
	Eastern Mediterranean	220,672 (8.1)	41 (0.2)	19 (13-25)	268 (1.2)	121 (106-136)	
	European	370,071 (13.6)	298 (1.1)	81 (72-90)	1,169 (5.1)	316 (298-334)	
	Southeast Asian Western Pacific	250,988 (9.2)	444 (1.7) 23 760 (91 1)	3419 /3376_34621	1,885 (8.3)	751 (717-785)	
	western Pacific	054,054 (25.0)	25,700 (51.1)	5415 (5570-5402)	19,980 (70,4)	2500 (2205-2555)	
↓ ↓	Philippines	216,508 (8.0)	15,106 (57.9)	6977 (6869-7085)	7,346 (32.3)	3393 (3317-3469)	
•	Vietnam	114,764 (4.2)	6,980 (26.8)	6082 (5943-6221)	1,721 (7.6)	1500 (1429-1571)	
ald 0 010%_	China†	202,395 (7.5)	1,383 (5.3)	683 (647-719)	3,600 (15.8)	1779 (1721-1837)	
EIU 0.019/0-	Mexico	389,408 (14.3)	991 (3.8)	254 (238-270)	1,200 (5.3)	308 (290-326)	
	India	181,735 (6.7)	357 (1.4)	196 (175-217)	1,438 (6.3)	791 (750-832)	
3.4%	other valence of tuberculosis in birth country:	1,609,413 (59.3)	1,258 (4.8)	78 (74–82)	7,411 (32.6)	460 (450-470)	
	0-9 cases/100,000	170,727 (6.3)	17 (0.1)	10 (5-15)	97 (0.4)	57 (45-69)	
	10-19 cases/100,000	110,148 (4.1)	10 (<0.1)	9 (3-15)	148 (0.7)	134 (112-156)	
	20-49 cases/100,000	629,895 (23.2)	1,029 (3.9)	163 (153-173)	1,665 (7.3)	264 (251-277)	
	50-99 cases/100,000	229,260 (8.4)	103 (0.4)	45 (36-54)	1,843 (8.1)	804 (767-841)	
NHS	100-149 cases/100,000	334,288 (12.3)	460 (1.8)	138 (125-151)	2,085 (9.2)	624 (597-651)	
nstitute for h Research	≥150 cases/100,000	1,207,380 (44.5)	24,385 (93.5)	2020 (1995-2045)	16,165 (71.2)	1339 (1318-1360)	Sources Line at al 2000
	ivo estimate	32,323 (1.2)	/1 (0.5)	T19 (100-210)	/15 (5.1)	2192 (2031-2353)	Source: Liu et di 2009

National I Healt

Data from UK pilot of pre-arrival screening also highlights variable yields for active tuberculosis

	2005*	2006	2007	2008	2009	2010*	Total
Bangladesh	0	19,711	22,185	23,457	58,996	15,024	139,373
Burkina							
Faso	0	0	6	32	22	6	66
Cambodia	0	64	76	80	127	83	430
Côte							
d'Ivoire	0	0	116	339	263	145	863
Eritrea	0	0	58	45	30	25	158
Ghana	0	0	10,896	8,446	4,065	2,809	26,216
Kenya	0	0	2,859	2,981	2,529	1,676	10,045
Laos	1	16	25	22	25	19	108
Niger	0	0	5	34	18	4	61
Pakistan	0	0	50,251	61,896	55,944	42,142	210,233
Somalia	0	0	316	458	519	429	1,722
Sudan	5	817	819	1,020	1,006	659	4,326
Tanzania	354	1,934	1,906	2,054	1,362	751	8,361
Thailand	634	8,731	8,314	8,690	7,866	6,122	40,357
Togo	0	0	17	86	55	33	191
Total	994	31,273	97,849	109,640	132,827	69,927	442,510

Total positive cases, overall = 294 TB cases or 66 per 100,000 population

The scheme is now self-financing, applicants paying a fee of between \$50 and \$77 US (up to £50). However, the cost of culture diagnostics is free for the applicants.

Cost-effectiveness of migrant screening for <u>active</u> tuberculosis

Studies/documents which have examined migrant screening for tuberculosis

Author	Year	Location	Aim of study/analysis	Tools assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness
Dasgupta	2000	Canada	Compare CXR and TST in screening migrants	CXR and TST	Yes	DA and M	\$/ active TB case averted
Schwartzman	2000	Canada	Compare CXR and TST in screening migrants from hypothetical high, medium and low TB burden settings	CXR and TST	No	DA and M	\$/ active TB case averted
Khan	2002	USA	Compare TST versus no screening for latent TB in recent migrants from different world regions	TST vs No screening	No	DA	\$/ active TB case averted
NICE	2006	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	TST, IGRA, TST+IGRA	No	DA	£/QALY loss averted
Oxlade	2007	Canada	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	CXR, TST, IGRA, TST+IGRA	No	DA	\$/ active TB case averted
NICE	2011	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	TST, IGRA, TST+IGRA	No	DA	£/QALY loss averted
Pareek	2011	UK	Compare no screening versus IGRA screening at different incidence thresholds	IGRA	Yes	DA	£/ active TB case averted
Linas	2011	USA	Compare no screening vs TST, IGRA or TST+IGRA as screening tools for latent TB in migrants	TST vs IGRA	No	М	\$/Life year gained
Pareek	2012	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants. Assessment of screening threshold and where to screen also.	TST, IGRA, TST+IGRA	Yes	DA	\$/ active TB case averted

Is it cost-effective to screen migrants for active tuberculosis?

Author	Year	Location	Aim of study/analysis	Tools assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness
Dasgupta	2000	Canada	Compare CXR and TST in screening migrants	CXR and TST	Yes	DA and M	\$/ active TB case averted
Schwartzman	2000	Canada	Compare CXR and TST in screening migrants from hypothetical high, medium and low TB burden settings	CXR and TST	No	DA and M	\$/ active TB case averted

Unclear whether it is cost-effective to screen migrants for active tuberculosis

Author	Year	Location	Aim of study/analysis	Tools assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness
Dasgupta	2000	Canada	Compare CXR and TST in screening migrants	CXR and TST	Yes	DA and M	\$/ active TB case averted
Schwartzman	2000	Canada	Compare CXR and TST in screening migrants from hypothetical high, medium and low TB burden settings	CXR and TST	No	DA and M	\$/ active TB case averted

Comparison of Cost-Effectiveness of Tuberculosis Screening of Close Contacts and Foreign-Born Populations

KABERI DASGUPTA, KEVIN SCHWARTZMAN, ROBERT MARCHAND, TERRY NAN TENNENBAUM, PAUL BRASSARD, and DICK MENZIES

Conclusion: Not cost-effective to screen migrants for active TB using chest radiographs

Tuberculosis Screening of Immigrants to Low-Prevalence Countries

A Cost-effectiveness Analysis

KEVIN SCHWARTZMAN and DICK MENZIES

AM J RESPIR CRIT CARE MED 2000;161:780-789.

NHS National Institute for Health Research Conclusion: Cost-effective to screen migrants from high prevalence countries for active TB using chest radiographs

Unclear whether it is cost-effective to screen migrants for active tuberculosis

Author	Year	Location	Aim of study/analysis	Tools	Empirical	Model type (Decision-analysis	Assessment of
Limi	te	d	data but diff	ere	nce	sin	
con	CIU	JSİ	ons relate to	dif	fer	ences	; in 👘
para	n	net	ers and mod	lel s	stru	icture	
PAUL BRASSARD, an	DICK M	IENZIES					

Tuberculosis Screening of Immigrants to Low-Prevalence Countries

A Cost-effectiveness Analysis

KEVIN SCHWARTZMAN and DICK MENZIES

AM J RESPIR CRIT CARE MED 2000;161:780-789.

National Institute for Health Research Conclusion: Cost-effective to screen migrants from high prevalence countries for active TB using chest radiographs

Screening migrants for latent tuberculosis

High-income countries display heterogeneity in screening for latent TB

UK: Screening practices for latent TB in migrants are also highly variable

Tuberculosis screening of migrants to lowburden nations: insights from evaluation of UK practice

M. Pareek**, I. Abubakar^{1,+}, P.J. White^{1,+}, G.P. Garnett[/] and A. Lalvani* EUROPEAN RESPIRATORY JOURNAL

Sequence of tests used	Low TB burden PCOs	High TB burden PCOs
New entrants aged <16 yrs#		
Total PCOs n	91	14
TST+CXR	23 (25.3)	5 (35.7)
TST+CXR+IGRA	66 (72.5)	9 (64.3)
IGRA+CXR	5 (5.5)	1 (7.1)
Other	2 (2.2)	O (0.0)
IGRA	66 (72.5)	9 (64.3)
New entrants aged 16-35 yrs ¹		
Total PCOs n	90	14
CXR+TST	5 (5.6)	O (0.0)
CXR+TST+IGRA	27 (30.0)	1 (7.1)
CXR+IGRA	3 (3.3)	0 (0.0)
TST+CXR	18 (20.0)	6 (42.9)
TST+ IGRA+CXR	39 (43.3)	6 (42.9)
IGRA+CXR	2 (2.2)	1 (7.1)
IGRA	67 (74.4)	8 (57.1)

	Low TB burden PCOs
Total PCOs n	02
New entrants aged <16 yrs	UL.
>40 cases per 100,000 p.a.	84 (91.3)
>500 cases per 100,000 p.a.	91 (98.9)
Sub-Saharan Africa	91 (98.9)
Other countries	4 (4.3)
New entrants aged 16–35 yrs	
>40 cases per 100,000 p.a.	37# (41.1)
>500 cases per 100,000 p.a.	90 (97.8)
Sub-Saharan Africa	90 (97.8)
Other countries	4 (4.3)

UK: Screening practices for latent TB in migrants are also highly variable

Tuberculosis screening of migrants to lowburden nations: insights from evaluation of UK practice

M. Pareek*^{,#}, I. Abubakar^{1,+}, P.J. White^{5,/}, G.P. Garnett[/] and A. Lalvani* EUROPEAN RESPIRATORY JOURNAL

Sequence of tests used	Low TB burden PCOs	High TB burden PCOs	
New entrants aged <16 yrs*			
Total PCOs n	91	14	
TST+CXR	23 (25.3)	5 (35.7)	
TST+CXR+IGRA	66 (72.5)	9 (64.3)	
IGRA+CXR	5 (5.5)	1 (7.1)	
Other	2 (2.2)	O (0.0)	
IGRA	66 (72.5)	9 (64.3)	
New entrants aged 16–35 yrs ¹			
AVD. 707		0.(0.0)	
CXR+TST	5 (5.6)	0 (0.0)	
CXR+TST+IGRA	27 (30.0)	1 (7.1)	
CXR+IGRA	3 (3.3)	O (0.0)	
TST+CXR	18 (20.0)	6 (42.9)	
TST+ IGRA+CXR	39 (43.3)	6 (42.9)	
IGRA+CXR	2 (2.2)	1 (7.1)	
IGRA	67 (74.4)	8 (57.1)	

	Low TB burden PCOs
Total PCOs n	92
New entrants aged <16 yrs	
>40 cases per 100,000 p.a.	84 (91.3)
>500 cases per 100,000 p.a.	91 (98.9)
Sub-Saharan Africa	91 (98.9)
Other countries	4 (4 9)
New entrants aged 16–35 vrs	
>40 cases per 100.000 p.a.	37# (41.1)
>500 cases per 100.000 p.a.	90 (97.8)
Sub-Saharan Africa	90 (97.8)
Other countries	4 (4 3)
Heterog	eneity in who t

Inconsistency and heterogeneity in practice highlight need for more data

QuantiFERON Gold in-tube

Tuberculin skin test

```
T-SPOT.TB
```

Who to screen?

How and where to screen?

Inconsistency and heterogeneity in practice highlight need for more data

QuantiFERON Gold in-tube

Tuberculin skin test

T-SPOT.TB

How and where to screen?

Augmenting the evidence base: who to screen?

Which migrant groups to screen: evidence from the United Kingdom

Screening of immigrants in the UK for imported latent tuberculosis: a multicentre cohort study and cost-effectiveness analysis

Manish Pareek, John P Watson, L Peter Ormerod, Onn Min Kon, Gerrit Woltmann, Peter J White, Ibrahim Abubakar, Ajit Lalvani

THE LANCET Infectious Diseases Lancet Infect Dis 2011; 11: 435-44 THE LANCET Infectious Diseases

	Number in total cohort (n=1229)	Number of IGRA-positive individuals/total number tested (n=245)	Unadjusted OR (95% CI)	p value	Adjusted OR (95% Cl)	p value
Age (years)						
<16*	36 (3%)	7/36 (19%)	1	0-0051†	1‡	<0.00015
16-25	589 (48%)	86/589 (15%)	0.7 (0.3-1.7)		0.9 (0-4-2-1)	
26-35	604 (49%)	152/604 (25%)	1.4 (0-6-3.2)		1.7 (0.7-4.1)	
Sex						
Female	629 (51%)	109/629(17%)	1	0-02	1¶	0-046
Male	600 (49%)	136/600 (23%)	1.4 (1.1-1.9)		1-3 (1-0-1 8)	
Origin						
Europe, Americas	50 (4%)	2/50 (4%)	1	0-0011		
Middle East, North Africa	26 (2%)	1/26 (4%)	1.0 (0.1-11.1)			
Other Asia	162 (13%)	29/162 (18%)	5.2 (1.2-22.8)			
Indian subcontinent	740 (60%)	144/740 (20%)	5.8 (1.4-24.1)			
Sub-Saharan Africa	251 (20%)	69/251 (28%)	9.1 (2.2-38.5)			
Incidence of tuberculosis in coun	try of origin (cases per	100 000 population per year	201			
0–50	32 (3%)	1/32 (3%)	1	<0.0001†	1**	0-0006
51-150	150 (12%)	19/150 (13%)	4.5 (0.60-34.9)		4-5 (0-60-35-3)	
151-250	835 (68%)	164/835 (20%)	7.6 (1.0-55.9)		7.9 (1.1-58-3)	
251-350	139 (11%)	41/139 (30%)	13-0 (1-7-98-2)		13-3 (1.8-101-5)	
>350	73 (6%)	20/73 (27%)	11·7 (1·5-91·5)		13-1 (1-7-102-7)	
BCG vaccinated?						
No	113 (17%)	16/113 (14%)	1	0-17		
Yes	544 (83%)	107/544 (20%)	1.5 (0.8-2.6)			

IGRA=interferon- γ release assay. OR=odds ratio. *Of the 36 individuals aged <16 years, one (2-8%) was aged ≤4 years, one (2-8%) was 5–9 years, and 34 (94-4%) were 10–15 years. $\uparrow \chi^2$ p for trend. #Mutually adjusted for sex and incidence of tuberculosis in country of origin. Sp value denotes overall effect of age in the model. ¶Mutually adjusted for age and tuberculosis incidence in country of origin. ||Region of origin and tuberculosis incidence in country of origin were strongly correlated; therefore, in the multivariate analysis, region of origin was left out. **Mutually adjusted for age and sex.

Table 1: Demographics of cohort and risk factors associated with IGRA positivity in immigrants

N

IGRA positivity independently associated with TB incidence in country of origin

Yields for latent TB: UK guidance missed majority of imported latent TB

Age group and TB	Number	Number	Yield at incidence level, ie.	% of all LTBI
incidence screening	tested	positive	proportion of those tested	identified if
threshold (per 100,000)			giving a positive result (%)	threshold set at
				this level
Screen ≥500 and SSA	235	65	27.7	27.3
Screen ≥500	46	12	26.1	5.0
Screen ≥450	54	13	24.1	5.5
Screen ≥350	66	18	27.3	7.6
Screen ≥250	197	58	29.4	24.4
Screen ≥150	1013	219	21.6	92.0
Screen ≥40	1180	238	20.2	100

Yields for latent TB: UK guidance missed majority of imported latent TB

Age group and TB incidence screening threshold (per 100,000)	Number tested	Number positive	Yield at incidence level, ie. proportion of those tested giving a positive result (%)	% of all LTBI identified if threshold set at this level
Screen ≥500 and SSA	235	65	27.7	27.3
Screen ≥500	46	12	26.1	5.0
Screen ≥450	54	13	24.1	5.5
Screen ≥350	66	18	27.3	7.6
Screen ≥250	197	58	29.4	24.4
Screen ≥150	1013	219	21.6	92.0
Screen ≥40	1180	238	20.2	100

Yields for latent TB: UK guidance missed majority of imported latent TB

Age group and TB	Number	Number	Yield at incidence level, ie.	% of all LTBI
incidence screening	tested	positive	proportion of those tested	identified if
threshold (per 100,000)			giving a positive result (%)	threshold set at
				this level
Screen ≥500 and SSA	235	65	27.7	27.3
Screen ≥500	46	12	26.1	5.0
Screen ≥450	54	13	24.1	5.5
Screen ≥350	66	18	27.3	7.6
Screen ≥250	197	58	29.4	24.4
Screen ≥150	1013	219	21.6	92.0
Screen ≥40	1180	238	20.2	100

Health-economic analyses: screening at lower thresholds averts more cases of TB but with increased total costs

Screening threshold for immigrants		Cases of active	Costs over 20	ICER
(annual incidenc	(annual incidence per 100,000)		years	(GBP per TB case
Under 16	16-35 years	(over 20 years)	(2010 GB pounds)	averted)
None	None	95.4	608,370.0	Baseline
40	500	91.9	678,586.5	Extended dominance
40	400	91.8	683,710.0	Strict dominance
40	450	91.7	683,267.9	Extended dominance
40	350	90.8	697,208.7	Extended dominance
40	300	87.1	761,431.6	Extended dominance
40	250	83.4	823,312.8	17,956.0
40	500 +SSA	82.2	850,103.1	Extended dominance
40	200	71.1	1,121,093.2	Extended dominance
40	150	54.2	1,431,928.5	20,818.8
40	100	53.7	1,456,820.1	Extended dominance
40	40	50.9	1,527,478.5	29,403.1
All	All	50.9	1,532,256.6	101,938.3

Cost-effectiveness of migrant screening for latent tuberculosis: who to screen?

Author	Year	Location	Type of Migrants to target for screening			Conclusion on cost-effectiveness	
				Regions/Countries of origin	Age	Time since arrival	
Schwartzman	2000	Canada	Model and literature	High/intermediate and low prevalence of active TB, latent TB and HIV	Only 20 year olds	Not stated	Screen migrants from high prevalence settings
Khan	2002	USA	Model and literature	Different countries and world regions	>18 years	Not stated	Screen migrants from high TB burden countries and regions
Oxlade	2007	Canada	Model and literature	Low, intermediate and high incidence of smear positive pulmonary tuberculosis	Not stated	Not stated	Screen migrants from high TB incidence settings
Pareek	2011	UK	Empirical data, model simulation and literature	Screening thresholds determined by TB incidence in country of origin (increments of 50/100,000)	<16 and 16-35 years	≤5 years	Screen all migrants <35 years arriving from countries with TB incidence ≥250 or ≥150/100,000 resident ≤5 years
Linas	2011	USA	Model and literature	Not stated	Various age groups considered: 6-14, 15-24, 25-44, 45-64, 65+ years	<5 years and >5 years	Screen foreign-born <65 years irrespective of time since arrival in the US
Pareek	2012	υк	Empirical data, model simulation and literature	Screening thresholds determined by TB incidence in country of origin (increments of 50/100,000)	16-35 years	≤5 years	Screen migrants from countries with TB incidence ≥250 or ≥150/100,000 resident ≤5 years

Cost-effectiveness of migrant screening for latent tuberculosis: who to screen?

Author	Year	Location	Type of data	Migrants to	Migrants to target for screening		
				Regions/Countries of origin	Age	Time since arrival	
			Model and	High/intermediate and low			Scroop migrapts from high

Screen (recent) migrants from high TB burden settings but which age-groups to screen is less clear

			nterature				10010
Linas	2011	USA	Model and literature	Not stated	Various age groups considered: 6-14, 15-24, 25-44, 45-64, 65+ years	<5 years and >5 years	Screen foreign-born <65 years irrespective of time since arrival in the US
Pareek	2012	UK	Empirical data, model simulation and literature	Screening thresholds determined by TB incidence in country of origin (increments of 50/100,000)	16-35 years	≤5 years	Screen migrants from countries with TB incidence ≥250 or ≥150/100,000 resident ≤5 years

Inconsistency and heterogeneity in practice highlight need for more data

Who to screen?

QuantiFERON
Gold in-tubeTuberculin skin testT-SPOT.TBHow and where to screeen?

Methods of screening migrants are evolving but certain questions unanswered

time

Source: NICE 2006

Community-based LTBI screening with single-step IGRA practicable and cost-effective

ORIGINAL ARTICLE

Community-based evaluation of immigrant tuberculosis screening using interferon γ release assays and tuberculin skin testing: observational study and economic analysis

Manish Pareek,^{1,2} Marion Bond,³ Jennifer Shorey,³ Suranjith Seneviratne,⁴ Margaret Guy,⁵ Peter White,^{6,2} Ajit Lalvani,¹ Onn Min Kon³

THORAX An International Journal Of Respiratory Medicine

 Community-based comparison of different screening methods in Westminster, London

Source: Pareek M et al Thorax 2012

Health-economics: Screening at intermediate threshold with single-step QuantiFERON Gold in-tube but without port-of-entry chest radiography most cost-effective

	Screening for LTBI						
CXR at lort of errival	Screening tool	Screening threshold for immigrants (cases of TB/ 100 000 per year)	Cases of active TB (over 20 years)	Costs (£, 2010)	Incremental cases of active TB	Incremental costs (£. 2010)	ICER
Vo	None	None	100.5	659 609.4	Baseline	Baseline	Basoline
lo	TST plus QFN	350	100.4	690 521.6	Extended dominance	Extended dominance	Extended dominan
lo	TST plus T-SPOT.TB	350	100.3	696 433.4	Extended dominance	Extended dominance	Extended dominan
4o	TST	350	100.1	706 478.7	Strict dominance	Strict dominance	Strict dominance
No.	TST plus QFN	300	100.0	707 756.2	Strict dominance	Strict dominance	Strict dominance
Vo.	TST plus T-SPOT.TB	300	99.8	715 317.0	Strict dominance	Strict dominance	Strict dominance
40	LUP N	350	99.4	701 676.9	Extended dominance	Extended dominance	Extended dominan
40	151	300	99.4	721 759.0	Extended dominance	Extended dominance	Extended dominan
10	I-SPUT.IB	350	99.3	728 560.7	Strict dominance	Strict dominance	Strict dominance
ios (os	TET also OEN	250	90.9	794 339.9	Strict dominance	Strict dominance	Strict dominance
res (as	TST plus UFN	350	98.8	785 252.0	Strict dominance	Strict dominance	Strict dominance
(or	TST PUS 1-SPUT.18	350	00.5	901 209 1	Strict dominance	Strict dominance	Strict dominance
(an	TST ohm OEN	300	98.4	802 496 6	Strict dominance	Strict dominance	Strict dominance
ins.	TST plus UPN	300	98.2	810 047 5	Strict dominance	Strict dominance	Strict dominance
lo	OEN OEN	300	99.0	722 512 2	Extended deminance	Extended dominance	Extended dominar
ion .	DEN	350	97.8	795 405 3	Strict dominance	Strict dominance	Strict dominance
es.	TET	300	97.6	916 400.3	Strict dominance	Strict dominance	Strict dominance
lo.	TST obse OEN	250	07.0	702 102 7	Strict dominance	Strict dominance	Strict dominance
lo	T-SPOT TB	200	97.7	751 926 8	Extended dominance	Extended dominance	Extended dominar
	T-SPOT TB	350	97.7	823 291 1	Strict dominance	Strict dominance	Strict dominance
lo	TST ohm T-SPOT TR	250	97.3	813 690 1	Extended dominance	Extended dominance	Extended dominar
las	OFN	300	96.4	818 243 7	Extended dominance	Extended dominance	Extended dominar
lee .	TST plug OEN	250	96.2	887 923 2	Strict dominance	Strict dominance	Strict dominance
lo	TST	250	96.2	823 749 7	Extended dominance	Extended dominance	Extended dominar
las	T-SPOT TB	300	96.1	846 657.3	Strict dominance	Strict dominance	Strict dominance
(es	TST plus T-SPOT TB	250	95.7	908 420.5	Strict dominance	Strict dominance	Strict dominance
lo	TST plus OFN	200	95.6	867 394.4	Strict dominance	Strict dominance	Strict dominance
lo	TST plus T-SPOT.TB	200	95.0	913 943.4	Strict dominance	Strict dominance	Strict dominance
es	TST	250	94.6	918 480.1	Strict dominance	Strict dominance	Strict dominance
es	TST plus OFN	200	94.0	962 124.9	Strict dominance	Strict dominance	Strict dominance
10	TST	200	93.8	995 462.9	Strict dominance	Strict dominance	Strict dominance
os	TST plus T-SPOT.TB	200	93.4	1008673.9	Strict dominance	Strict dominance	Strict dominance
lo	TST plus QFN	150	93.0	954 636.7	Strict dominance	Strict dominance	Strict dominance
lo	TST plus T-SPOT.TB	150	92.3	1 023 409.3	Strict dominance	Strict dominance	Strict dominance
es	TST	200	92.2	1 090 193.4	Strict dominance	Strict dominance	Strict dominance
lo	QFN	250	92.1	839713.7	8.4	180 104.3	21 565.3
lo	TST plus QFN	100	91.5	1018843.7	Strict dominance	Strict dominance	Strict dominance
es	TST plus QFN	150	91.4	1049367.2	Strict dominance	Strict dominance	Strict dominance
lo	T-SPOT.TB	250	91.3	909 426.7	Extended dominance	Extended dominance	Extended dominar
lo	TST plus T-SPOT.TB	100	90.7	1113644.2	Strict dominance	Strict dominance	Strict dominance
os	TST plus T-SPOT.TB	150	90.7	1 118 139.7	Strict dominance	Strict dominance	Strict dominance
lo	TST	150	90.6	1 149 671.8	Strict dominance	Strict dominance	Strict dominance
es	QEN	250	90.6	934 444.2	Extended dominance	Extended dominance	Extended dominar
es	TST plus QFN	100	89.9	1 113 574.1	Strict dominance	Strict dominance	Strict dominance
es	T-SPOT.TB	250	89.7	1 004 157.2	Strict dominance	Strict dominance	Strict dominance
lo	QFN	200	89.1	959 014.5	Extended dominance	Extended dominance	Extended dominar
'es	TST plus T-SPOT.TB	100	89.1	1 208 374.6	Strict dominance	Strict dominance	Strict dominance
lo	TST	100	89.0	1 319 841.4	Strict dominance	Strict dominance	Strict dominance
es	TST	150	89.0	1 244 402.3	Strict dominance	Strict dominance	Strict dominance
lo	T-SPOT.TB	200	88.2	1 171 831.5	Strict dominance	Strict dominance	Strict dominance
es	QEN	200	87.6	1 053 744.9	Extended dominance	Extended dominance	Extended dominar
es	TST	100	87.4	1 414 571.9	Strict dominance	Strict dominance	Strict dominance
es	T-SPOT.TB	200	86.6	1 266 562.0	Strict dominance	Strict dominance	Strict dominance
lo	TST plus QFN	40	86.5	1 159 835.9	Strict dominance	Strict dominance	Strict dominance
lo	TST plus T-SPOT.TB	40	85.5	1 296 089.2	Strict dominance	Strict dominance	Strict dominance

CXR at Screening for LTBI

NHS

National Institute for

Health Research

port of arrival	Screening tool	(cases of TB/ 100 000 per year)	over 20 (over 20 years)	Costs (£, 2010)	Incremental cases of active TB	Incremental costs (£, 2010)	ICER
No	QFN	150	84.3	1 089 176.5	7.8	249 462.8	31 867.1
Yes	TST plus T-SPOT.TB	40	83.9	1 390 819.6	Strict dominance	Strict dominance	Strict dominance
No	TST	40	83.3	1 597 273.1	Strict dominance	Strict dominance	Strict dominance
No	T-SPOT.TB	150	83.0	1 408 873.0	Strict dominance	Strict dominance	Strict dominance
No	QFN	100	82.8	1 195 634.0	Strict dominance	Strict dominance	Strict dominance
Yes	QFN	150	82.7	1 183 906.9	Extended dominance	Extended dominance	Extended dominance
Yes	TST	40	81.7	1 692 003.5	Strict dominance	Strict dominance	Strict dominance
No	T-SPOT.TB	100	81.5	1 666 546.8	Strict dominance	Strict dominance	Strict dominance
Yes	T-SPOT.TB	150	81.4	1 503 603.4	Strict dominance	Strict dominance	Strict dominance
Yes	QFN	100	81.2	1 290 364.5	Extended dominance	Extended dominance	Extended dominance
Yes	T-SPOT.TB	100	79.9	1 761 277.3	Strict dominance	Strict dominance	Strict dominance
No	QFN	40	74.9	1 414 623.3	9.4	325 446.8	34 753.5
Yes	QFN	40	73.4	1 509 353.7	1.6	94 730.4	59 489.1
No	T-SPOT.TB	40	73.3	2 095 182.0	Extended dominance	Extended dominance	Extended dominance
Yes	T-SPOT.TB	40	71.7	2 189 912.4	1.7	680 558.7	402 421.8

Cases of

- CXR at port of entry
- LTBI screening tool
- LTBI screening threshold

Screening at intermediate threshold with single-step QuantiFERON Gold in-tube but without port-of-entry chest radiography most cost-effective

Chest radiography	Screening tool(s)	Screening threshold (per 100,000)	Cases of active TB (over 20 years)	Costs over 20 years (2010 GB pounds)	ICER (GBP per TB case averted)
No	None	None	100.5	659,609.4	Baseline
No	QFN-GIT	250	92.1	839,713.7	21,565.3
No	QFN-GIT	150	84.3	1,089,176.5	31,867.1
No	QFN-GIT	40	74.9	1,414,623.3	34,753.5
Yes	QFN-GIT	40	73.4	1,509,353.7	59,489.1
Yes	T-SPOT.TB	40	71.7	2,189,912.4	402,421.8

Source: Pareek M et al Thorax 2012

Cost-effectiveness of migrant screening for latent tuberculosis: how to screen?

Author	Year	Location	Tools assessed	Incidence threshold assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness	Conclusion on cost- effectiveness
Schwartzman	2000	Canada	CXR and TST	No	No	DA and M	\$/ active TB case averted	CXR
NICE	2006	UK	TST, IGRA, TST+IGRA	Yes	No	DA	£/QALY loss averted	TST+IGRA
Oxlade	2007	Canada	CXR, TST, IGRA	No	No	DA	\$/ active TB case averted	CXR
NICE	2011	UK	TST, IGRA, TST+IGRA	No	No	DA	£/QALY loss averted	TST+IGRA or IGRA
Pareek	2011	UK	IGRA	Yes	Yes	DA	\$/ active TB case averted	IGRA
Linas	2011	USA	TST vs IGRA	No	No	М	\$/Life year gained	IGRA
Pareek	2012	UK	TST, IGRA, TST+IGRA	Yes	Yes	DA	\$/ active TB case averted	IGRA

Cost-effectiveness of migrant screening for latent tuberculosis: how to screen?

Author	Year	Location	Tools assessed	Incidence threshold assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness	Conclusion on cost- effectiveness

Use single-step IGRA Little data on which IGRA to use

Pareek	2011	UK	IGRA	Yes	Yes	DA	\$/ active TB case averted	IGRA
Linas	2011	USA	TST vs IGRA	No	No	М	\$/Life year gained	IGRA
Pareek	2012	UK	TST, IGRA, TST+IGRA	Yes	Yes	DA	\$/ active TB case averted	IGRA

Cost-effectiveness of migrant screening for latent tuberculosis: where to screen?

Author	Year	Location	Aim of study/analysis	Tools assessed	Empirical data	Model type (Decision-analysis (DA) or Markov (M))	Assessment of cost-effectiveness
Dasgupta	2000	Canada	Compare CXR and TST in screening migrants	CXR and TST	Yes	DA and M	\$/ active TB case averted
Schwartzman	2000	Canada	Compare CXR and TST in screening migrants from hypothetical high, medium and low TB burden settings	CXR and TST	No	DA and M	\$/ active TB case averted
Khan	2002	USA	Compare TST versus no screening for latent TB in recent migrants from different world regions	TST vs No screening	No	DA	\$/ active TB case averted
NICE	2006	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	TST, IGRA, TST+IGRA	No	DA	£/QALY loss averted
Oxlade	2007	Canada	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	CXR, TST, IGRA, TST+IGRA	No	DA	\$/ active TB case averted
NICE	2011	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants	TST, IGRA, TST+IGRA	No	DA	£/QALY loss averted
Pareek	2011	UK	Compare no screening versus IGRA screening at different incidence thresholds	IGRA	Yes	DA	£/ active TB case averted
Linas	2011	USA	Compare no screening vs TST, IGRA or TST+IGRA as screening tools for latent TB in migrants	TST vs IGRA	No	М	\$/Life year gained
Pareek	2012	UK	Compare no screening versus TST, IGRA or TST+IGRA as screening tools for latent TB in recent migrants. Assessment of screening threshold and where to screen also.	TST, IGRA, TST+IGRA	Yes	DA	\$/ active TB case averted

NHS National Institute for Health Research

Cost-effectiveness of migrant screening for latent tuberculosis: where to screen?

Author Year Location Type of data	Screening locational assessed	Conclusion
-----------------------------------	-------------------------------	------------

Screen post-arrival Community-based setting

Sensitivity analysis: cost-effectiveness highly determined by certain parameters

Author	Year	Location	Parameters which make migrant screening more cost-effective
Dasgupta	2000	Canada	Increased risk of future disease, higher levels of compliance with medication
Schwartzman	2000	Canada	Higher prevalence of latent TB and HIV, prescription and completion of chemoprophylaxis
Khan	2002	USA	Incidence of tuberculosis
NICE	2006	UK	Prevalence of latent TB and rate of reactivation
Oxlade	2007	Canada	Rate of reactivation and completion of chemoprophylaxis
NICE	2011	UK	Prevalence of latent TB and rate of reactivation
Pareek	2011	UK	Prevalence of latent TB and rate of reactivation
Linas	2011	USA	Rate of reactivation
Pareek	2012	UK	Prevalence of latent TB and rate of reactivation

Sensitivity analysis: cost-effectiveness highly determined by certain parameters

Author	Year	Location	Parameters which make migrant screening more cost-effective
Descurto	2000	Conodo	Increased vials of future diseases, bishow lought of some linear with modication

Prevalence of latent TB, reactivation rate and operational factors affect costeffectiveness most significantly

Pareek	2011	UK	Prevalence of latent TB and rate of reactivation	
Linas	2011	USA	Rate of reactivation	
Pareek	2012	UK	Prevalence of latent TB and rate of reactivation	

Post-arrival, community-based screening facilitates wider migrant health programmes

NHS National Institute for Health Research

Areas for further research

- Data on prevalence of latent TB in wide range of migrants
- Data on the natural history of TB in migrants
 - Reactivation rates
- Age cut-offs for screening

National Institute for Health Research

- How to operationalise screening
- Acceptability of screening to migrants
- Completion rates for chemoprophylaxis

Concluding statements

- Foreign-born individuals disproportionately bear the TB burden in high-income countries
- Reactivation of latent TB important
- Migrant screening likely to comprise multiple elements
 - Pre-arrival screening for active TB
 - Targeted post arrival screening for LTBI
 - Migrants from intermediate/high burden settings
 - Single-step IGRA
- Further research required in this area

Acknowledgements

• Funders

NHS National Institute for Health Research

Thank you

Any questions/comments? mp426@le.ac.uk

