

Characteristics of SARS-CoV-2 patients dying in Italy Report based on available data on December 16th, 2020

1. Sample

The present report describes the characteristics of 63,573 SARS-CoV-2 patients dying in Italy*, as reported by the Integrated Covid-19 Surveillance System coordinated by the National Institute of Health-ISS. Geographic distribution across the 19 regions and 2 autonomous provinces of Trento and Bozen is presented in *Table 1*. Absolute number and percentage of deaths are reported according to the 3 phases that characterized the pandemic from the beginning in 2020 to December the 16th 2020: the first wave (March-May), the low incidence phase (June-September), and the second wave (October-December), the latter is still ongoing.

The surveillance data on deaths are constantly updated and consolidated and both activities require time to be carried out. Each Region has its own organization for updating data and related execution times. Therefore, when reading the data by Region, it is necessary to take into account that the timing of notification, control, verification and updating of data varies from Region to Region and from period to period; this may involve variations (increasing and/or decreasing) and differences both with the data already published in the previous reports, and with the data published by the Civil Protection. It should also be considered that the regional differences in the percentage of deaths reported in the table should not be interpreted in terms of risk. In fact, case fatality depends on the number of infections occurring in each region over a period of time compatible with the possible observation of the fatal event. In this regard, it should also be taken into account that the difference between the number of infections and the notified cases may vary regionally and over time as a function of different test access strategies adopted during the epidemic, thus distorting the comparison of regional case fatality.

Table 1. Geographic distribution of deceased patients SARS-CoV-2 positive by period

	March	-May	June-September		October-16 th December		Total		
REGION	N	%	N	%	N	%	N	%	
Lombardia	16,359	47.6	607	33.0	7,104	26.0	24,070	37.9	
Emilia Romagna	4,313	12.5	173	9.4	2,232	8.2	6,718	10.6	
Piemonte	4,091	11.9	126	6.9	1,326	4.8	5,543	8.7	
Veneto	1,950	<i>5.7</i>	248	13.5	2,884	10.5	5,082	8.0	
Lazio	840	2.4	143	7.8	2,099	7.7	3,082	4.8	
Toscana	1,045	3.0	96	5.2	1,764	6.5	2,905	4.6	
Campania	477	1.4	58	3.2	2,102	7.7	2,637	4.1	
Liguria	1,516	4.4	138	7.5	974	3.6	2,628	4.1	
Puglia	524	1.5	75	4.1	1,460	5.3	2,059	3.2	
Sicilia	300	0.9	57	3.1	1,654	6.0	2,011	3.2	
Marche	981	2.9	7	0.4	223	0.8	1,211	1.9	
Abruzzo	446	1.3	37	2.0	597	2.2	1,080	1.7	
Friuli Venezia Giulia	346	1.0	21	1.1	632	2.3	999	1.6	
Trento	402	1.2	4	0.2	389	1.4	795	1.3	
Bolzano	290	0.8	2	0.1	380	1.4	672	1.1	


Total	34,376	100.0	1,839	100.0	27,347	100.0	63,562	100.0
Molise	22	0.1	2	0.1	146	0.5	170	0.3
Basilicata	29	0.1	2	0.1	143	0.5	174	0.3
Calabria	96	0.3	4	0.2	225	0.8	325	0.5
Valle d'Aosta	143	0.4	6	0.3	206	0.8	355	0.6
Sardegna	131	0.4	24	1.3	361	1.3	516	0.8
Umbria	75	0.2	9	0.5	446	1.6	530	0.8

Note: For 18 deceased persons, period was not possible to be evaluated

2. Demographics

Mean age of patients dying for SARS-CoV-2 infection was 80 years (median 82, range 0-109, IQR 75-88). Women were 27,132 (42.7%). Figure 1 shows that median age of patients dying for SARS-CoV-2 infection was more than 30 years higher as compared with the national sample diagnosed with SARS-CoV-2 infection (median age 48 years). Figure 2 shows the absolute number of deaths by age group. Women dying for SARS-CoV-2 infection had an older age than men (median age women 85 - median age men 80).

Figure 1. Median age of patients with SARS-CoV-2 infection and SARS-CoV-2 positive deceased patients

^{*} SARS-CoV-2 related deaths presented in this report are those occurring in patients who test positive for SARS-CoV-2RT by PCR, independently from pre-existing diseases.

Figure 2. Absolute number of deaths by age group

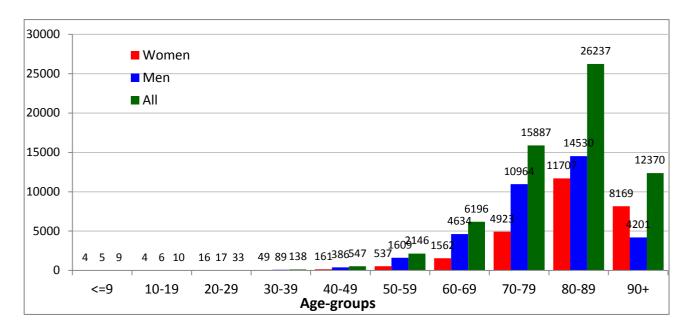
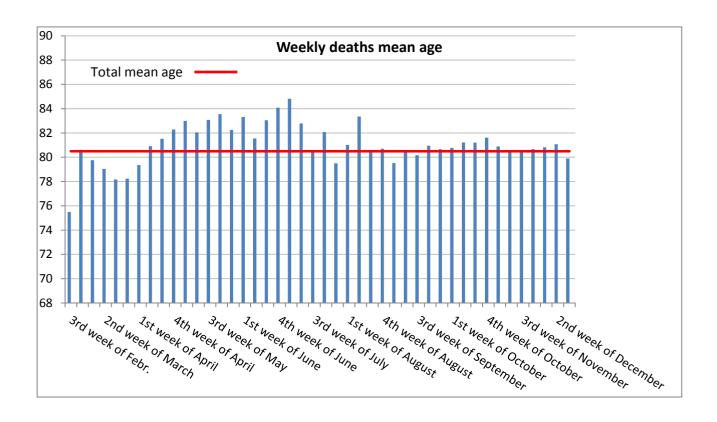



Figure 3 shows the trend in the average age of SARS-CoV-2 positive deceased patients per calendar week, starting from the 3rd week of February 2020 (the date of the first death dates back to 21st February 2020). The average age of weekly deceased persons has substantially increased up to 85 years (1st week of July) and then dropped slightly.

Figure 3. Mean age of SARS-CoV-2 positive deceased patients by week of death

3. Deaths under the age of 50 years

As of December 16th 2020, 737 out of the 63,573 (1.2%) positive SARS-CoV-2 patients under the age of 50 died. In particular, 190 of these were less than 40 years (117 men and 73 women), age range between 0 and 39 years. For 41 patients under the age of 40 years no clinical information is available; out of the remaining ones, 130 had serious pre-existing pathologies (cardiovascular, renal, psychiatric pathologies, diabetes, obesity) and 19 had no major pathologies.

4. Pre-existing conditions

Table 2 presents most common comorbidities diagnosed before SARS-CoV-2 infection in a sample of SARS-CoV-2 positive deceased patients. Data on diseases were based on chart review and was available on 5,962 patients dying in-hospital for whom it was possible to analyse clinic charts. The medical records are sent to the ISS by the hospitals at different times, compatibly with the priorities of the activities carried out in the hospitals themselves. Therefore, the sample is opportunistic; it represents deaths in subjects who needed hospitalization only, and the regions are represented trying to maintain a proportionality with respect to the number of deaths. Mean number of diseases was 3.6 (median 3, SD 2.1). Overall, 3.1% of the sample presented with a no comorbidities, 12.4% with a single comorbidity, 18.4% with 2, and 66.2% with 3 or more.

Before hospitalization, 21% of SARS-CoV-2 positive deceased patients followed ACE-inhibitor therapy and 14% angiotensin receptor blockers-ARBs therapy. This information can be underestimated because data on drug treatment before admission were not always described in the chart.

Table 2. Most common comorbidities observed in SARS-CoV-2 positive deceased patients

Diseases	N	%
Ischemic heart disease	1661	27.9
Atrial Fibrillation	1448	24.3
Heart failure	970	16.3
Stroke	691	11.6
Hypertension	3934	66.0
Type 2-Diabetes	1736	29.1
Dementia	1387	23.3
COPD (Chronic Obstructive Pulmonary Disease)	1036	17.4
Active cancer in the past 5 years	1011	17.0
Chronic liver disease	280	4.7
Chronic renal failure	1255	21.0
Dialysis	126	2.1
Respiratory failure	403	6.8
HIV Infection	15	0.3
Autoimmune diseases	257	4.3
Obesity	631	10.6
Number of comorbidities		
0 comorbidities	184	3.1
1 comorbidity	739	12.4
2 comorbidities	1095	18.4
3 comorbidities and over	3944	66.2

Table 3 presents the most common pre-existing chronic pathologies in patients who died, separately in men (n = 3,589) and women (n = 2,379). The average number of pathologies observed in women is 3.8 (median 4, Standard Deviation 2.0). In men the average number of pathologies observed is 3.5 (median 3, Standard Deviation 2.1).

Table 3. Most common comorbidities observed in SARS-CoV-2 positive deceased patients by gender

Women

Men

Diseases	N	%
Ischemic heart disease	556	23.4
Atrial Fibrillation	608	25.6
Heart Failure	444	18.2
Stroke	299	12.6
Hypertension	1630	68.7
Type 2-Diabetes	633	26.7
Dementia	761	32.1
COPD (Chronic Obstructive Pulmonary Disease)	328	13.8
Active cancer in the past 5 years	369	15.5
Chronic liver disease	97	4.1
Chronic renal failure	460	19.4
Dialysis	39	1.6
Respiratory failure	167	7.0
HIV Infection	2	0.1
Autoimmune diseases	145	6.1
Obesity	244	10.3
Number of comorbidities		
0 comorbidities	48	2.0
1 comorbidity	258	10.9
2 comorbidities	400	16.9
3 comorbidities and over	1667	70.2

N	%		
1105	30.8		
840	23.4		
526	14.4		
392	10.9		
2304	64.2		
1103	30.7		
626	17.4		
708	19.7		
642	17.9		
183	5.1		
795	22.2		
87	2.4		
236	6.6		
13	0.4		
112	3.1		
387	10.8		
136	3.8		
481	13.4		
695	19.4		
2277	63.4		

5. Diagnosis of hospitalization

In 90.6% of hospitalized persons who died and whose medical records were analysed (N=5962), conditions (e.g. pneumonia, respiratory failure) or symptoms (e.g. fever, dyspnoea, cough) compatible with SARS-CoV-2 were mentioned. In 522 cases (9.4% of cases) the diagnosis of hospitalization was not related to the infection. In 76 cases the diagnosis of hospitalization concerned exclusively neoplastic pathologies, in 176 cases cardiovascular pathologies (for example Acute Myocardial Infarction-AMI, heart failure, stroke), in 73 cases gastrointestinal pathologies (for example cholecystitis, perforation of the intestine, intestinal obstruction, cirrhosis), in 197 cases other pathologies.

6. Symptoms

Figure 4 shows symptoms most commonly observed at hospital admission of hospitalized persons who died and whose medical records were analysed (N=5962). Fever, dyspnoea and cough were the most commonly observed symptoms, while diarrhoea and haemoptysis were less commonly observed. Overall, 8.0% of patients did not present any symptoms at hospital admission.

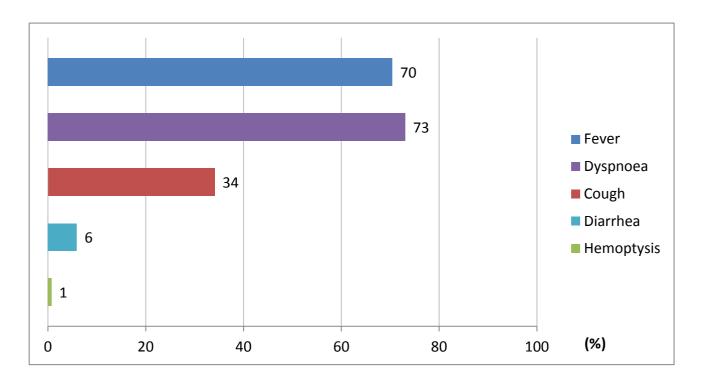


Figure 4. Most common symptoms observed in SARS-CoV-2 positive deceased patients

7. Acute conditions

Between patients whose medical records were analysed, Acute Respiratory Distress syndrome was observed in the majority of patients (94.0% of cases), followed by acute renal failure (23.8%). Superinfection was observed in 19.4% and acute cardiac injury in 10.8% of cases.

8. Treatments

Antibiotics were used by 85.8% of patients during hospital stay, while less used were corticosteroids (51.3%) and antivirals (48.7%). Concomitant use of these 3 treatments was observed in 23.9% of cases.

Out of SARS-CoV-2 positive deceased patients, 4.1% were treated with Tocilizumab during hospitalization.

9. Time-line

Figure 5 shows, for SARS-CoV-2 positive deceased patients whose medical records were analysed (N=5962), the median times, in days, from the onset of symptoms to death (12 days), from the onset of symptoms to hospitalization (5 days) and from hospitalization to death (7 days). The time from hospitalization to death was 6 days longer in those who were transferred to intensive care than those who were not transferred (12 days vs. 6 days).

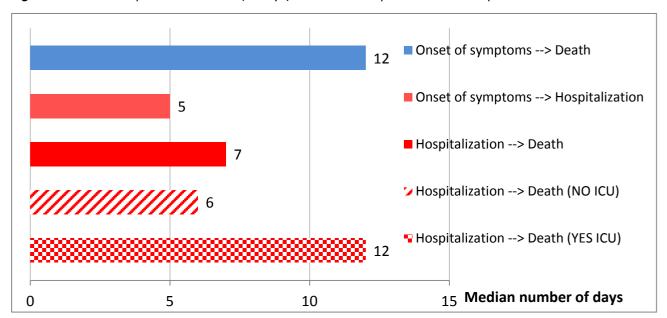


Figure 5. Median hospitalization times (in days) in SARS-CoV-2 positive deceased patients

10. Comparison of death characteristics in the 3 quarters March-May, June- September, and October16th December 2020

Table 4 summarizes the main characteristics of deaths with COVID-19 that occurred in 3 periods of time from the beginning of the pandemic in 2020: the initial quarter, March-May, the second quarter, June-September, and the third period October-December. Overall, the sample represents 9.6% of all deaths from the beginning of the pandemic; in particular, the 13.3% of those who died between March and May, 27.5% of those who died between June and September, and 3.7% of those who died between October and December.

Deaths of people with 3 or more pre-existing pathologies increase and those of persons with fewer pathologies or none decrease: this seems to indicate that in the second and third periods deaths concern older people and persons with a pre-existing health condition worse than those dying in the first quarter (table 4).

The use of drugs is also extremely different in the three periods, with a clear reduction in the use of antivirals and an increase in the use of steroids in the second and third periods.

Table 4. Mean age, prevalence of women, number of pre-existing diseases, complications and treatments in deaths with COVID-19 in the 3 periods March-May, June- September, and October-16th December 2020

Sample of the evaluated clinical charts	All (n=5,962)	March-May 2020 (n=4,470)	June-Sept 2020 (n=501)	Oct-16 th Dec 2020 (n=991)	p- value*
N of comorbidities					
0	184 (3.1)	169 (3.8)	6 (1.2)	9 (0.9)	
1	739 (12.4)	606 (13.6)	44 (8.8)	89 (9.0)	<0.001
2	1095 (18.4)	895 (20.0)	66 (13.2)	134 (13.5)	\0.001
3 or more	3944 (66.2)	2800 (62.6)	385 (76.8)	759 (76.6)	
Complications during hospitalization					
Acute Respiratory Distress Syndrome	5499 (94.0)	4142 (95.2)	412 (83.2)	945 (94.6)	<0.001
Acute renal failure	1389 (23.8)	1001 (23.0)	134 (27.1)	254 (25.4)	0.052
Acute cardiac injury	632 (10.8)	471 (10.8)	49 (9.9)	112 (11.2)	0.743
Superinfection	1134 (19.4)	722 (16.6)	203 (41.0)	209 (20.9)	<0.001
Treatments					
Antibiotics	5052 (85.8)	3813 (86.7)	424 (86.0)	815 (81.7)	<0.001
Antivirals	2865 (48.7)	2599 (59.1)	157 (31.8)	109 (10.9)	<0.001
Steroids	3022 (51.3)	1903 (43.3)	321 (65.1)	798 (80.0)	<0.001
Tocilizumab	218 (4.1)	170 (4.3)	28 (5.9)	20 (2.1)	0.001

^{*} *p-value* for difference between the 3 periods

The distribution of the main pre-existing diseases in the different periods is presented in *figure 6*. The prevalence of atrial fibrillation, stroke, dementia, COPD, cancer, renal insufficiency, and obesity varies significantly in the three periods. These pathologies are more frequently diagnosed in the deceased in the second and third period than in the first (*Figure 6*).

Figure 6. Pre-existing pathologies in deaths with COVID-19 in the 3 periods

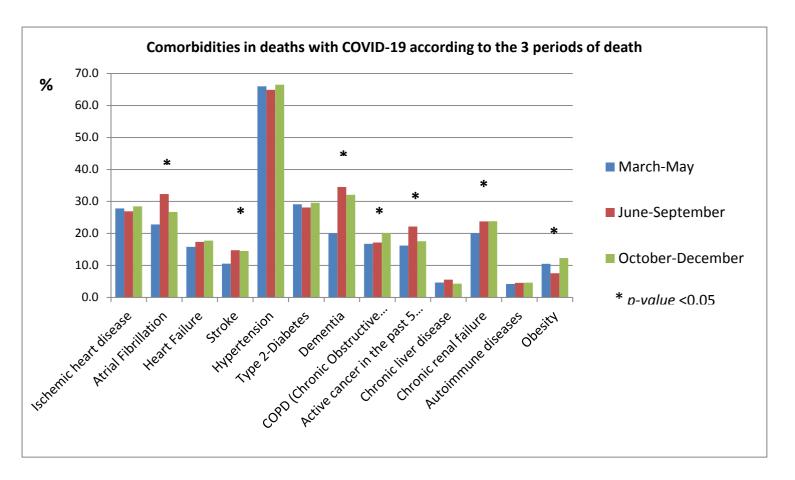


Table 5 shows the durations, as median times (in days), from the symptoms onset to death, SARS-CoV-2 testing, and hospitalization, and from the hospitalization to death, in the 3 periods considered. Between the first and second period doubles the time that passes from the onset of symptoms to death, while it returns to the initial levels in the third period; the time from the onset of symptoms to the swab for the detection of SARS-CoV-2 infection decreases in the second period and remain stable in the third, as well as the time between the onset of symptoms and hospitalization; the median duration in days from hospitalization to death doubles between the first and second period; it decreases again in the third period. These results seem to suggest a greater reactivity of the Health System evidenced by the greater speed in carrying out diagnostic tests and hospitalization.

Table 5. Median times (in days) between symptoms onset, PCR test, hospitalization and death in the 3 periods

	All (n=5,9		202	March-May 2020 (n=4,470)		June-September 2020 (n=501)		Oct-16 th Dec 2020 (n=991)	
Times(in days)	Median	IQR	Median	IQR	Median	IQR	Median	IQR	
From symptoms onset to death	12	7-20	12	7-19	22	9-55	11	7-18	<0.001
From symptoms onset to SARS-CoV-2 testing	5	2-8	5	2-9	3	1-7	3	1-6	<0.001
From symptoms onset to hospitalization	4	2-7	4	2-7	3	1-7	3	1-7	<0.001
From hospitalization to death	7	3-14	7	3-13	15	5-43	7	3-12	<0.001

^{*} p-value for difference between the 3 periods

IQR = Inter-Quartile Range

The data here presented can be explained by a greater knowledge about the infection and a greater ability and timeliness of treatment in the period June-August in comparison to the previous quarter. In addition, it is likely that in the months of March and April SARS-CoV-2 infection was under-diagnosed in many frail elderly who died (such as those living in RSA). This may have led to an underestimation of the burden of the diseases in persons dying in that period

This report was produced by SARS-CoV-2 Surveillance Group

Members of the SARS-CoV-2 Surveillance Group

Luigi Palmieri, Elvira Agazio, Xanthi Andrianou, Pierfrancesco Barbariol, Antonino Bella, Eva Benelli, Luigi Bertinato, Matilde Bocci, Stefano Boros, Giovanni Calcagnini, Marco Canevelli, Federica Censi, Alessandra Ciervo, Elisa Colaizzo, Martina Del Manso, Corrado Di Benedetto, Chiara Donfrancesco, Massimo Fabiani, Francesco Facchiano, Marco Floridia, Fabio Galati, Marina Giuliano, Tiziana Grisetti, Cecilia Guastadisegni, Yllka Kodra, Ilaria Lega, Cinzia Lo Noce, Pietro Maiozzi, Valerio Manno, Margherita Martini, Alberto Mateo Urdiales, Eugenio Mattei, Claudia Meduri, Paola Meli, Giada Minelli, Lorenza Nisticò, Graziano Onder, Lucia Palmisano, Daniele Petrone, Patrizio Pezzotti, Flavia Pricci, Ornella Punzo, Vincenzo Puro, Federica Quarata, Valeria Raparelli, Flavia Riccardo, Simone Rocchetto, Paolo Salerno, Giulia Sarti, Debora Serra, Matteo Spuri, Paola Stefanelli, Marco Tallon, Manuela Tamburo De Bella, Dorina Tiple, Marco Toccaceli Blasi, Federica Trentin, Brigid Unim, Luana Vaianella, Nicola Vanacore, Maria Fenicia Vescio, Emanuele Rocco Villani, Silvio Brusaferro.